ALLERGENIC ACTIVITY OF FISH EXTRACT

*Department of Microbiology, College of Medicine, University of Basrah, Basrah, Iraq
** *** Department of Microbiology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
(Received 22 April 2005, Accepted 11 October 2005)

Keywords: Fish extract, Allergen, IgE.

ABSTRACT

A component of Fish extract has been isolated by a combination of 65% ammonium sulphat salt precipitation and gel filtration. The purified allergen appeared as two major peaks. Peak 11 exhibited the highest IgE binding inhibition and showed a specific allergenic activity about two fold higher than that of the peak 1. Peak 1 and peak 11 cross reacted in IgE binding inhibition. Completely inhibiting the binding of specific IgE to each other. The allergenicity of purified allergen was not lost during purification process.

INTRODUCTION

For the estimation of airborne exposure to allergens or the amount of allergenic potency of allergen extract, the measurement of specific allergens in weight units is a feasible alternative. Almost all quantification methods of allergens are based on the use of specific antisera. The simplest methods are radial immunodiffusion and rocket immunoelectrophoresis which require monospecific antisera. In the radial immunodiffusion, the size of the precipitation circle is proportional to the amount of a single allergen. In the rocket immunoelectrophoresis, the height of the precipitate depends on the amount of single allergen. Radioallergosorbent test (RAST) is a test for the measurement of allergen-specific IgE. It can be used in the allergen quantification when the binding of patients' IgE to the solid-phase allergen is inhibited by the same allergen (RAST - inhibition). The amount of the allergen is calculated from the ratio of 50% inhibition points of the sample and the standard curves. The ELISA-inhibition is an active method based on the same principle. Depending on the assay design of inhibition methods, it is possible to measure all allergens in a crude extract or a single allergen. The aim of this study was
therefore determined the allergic activity of fish extract and the purified allergen extract using the ELISA inhibition.

MATERIALS AND METHODS

Sera:

Normal sera:
Sera of 20 healthy subjects from Basrah University, who were free from any clinical symptoms and who were skin-prick test (SPT) and ELISA negative to fish.

Allergic sera:
Twenty sera from subject sensitive to fish extract (as proved by SPT, ELISA and clinical history) were also used in this study. All subjects had a history of asthma and rhinitis.

Antigens:
Aqueous extract of fish Temnolabis ilisha was prepared from the meat of raw fish which was ground in pH 7.2 phosphate buffer saline PBS at 1: 20 (W / V) ratio in a waring blender, extracted overnight under refrigeration and centrifuged at 10000 rpm for 1 hour at 4°C. The supernatant was desalted by gel filtration on sephadex G-25 and stored at 4°C. The protein content was estimated by the method of Whitaker and Granum.

Antibodies:
Rabbit antihuman Ig and horseradish peroxidase had been conjugated as previously reported.

ELISA Inhibition:
For competition ELISA microtiter 96 well plates were coated with allergen extract at 100 μg/ml for 1 hour at 37°C. The plates were then blocked for 1 hour with (PBS-BSA)/ phosphate buffered saline Bovine serum albumin 1%. Afterwards 25 μl of the serum (diluted 1:5 in PBS) and 25 μl of serial dilutions of the allergens extract were added to the wells and incubated for 2 hours at room temperature. After washing wells were incubated with peroxides labeled antihuman IgE for one hours at room temperature. The plates were washed again and developed by incubating with 50 μl/well of solutions of orthophenylen diamine (OPD) for 30 minutes. The reaction was stopped by adding 50 μl of
RESULTS

Allergenic activity of the purified allergen

On fractionating fish, two major peaks were observed (Fig. 1), the allergenic activity of these two peak (peak 1 and peak 2) and the crude protein extract was evaluated by means of competition ELISA as have been shown in table 1; either peak 1 and peak 2 could inhibit to a high extent; the binding of specific IgE to the whole protein extract (peak 1 72 % and peak 2 73 %); suggesting that these protein bear major allergenic determinant of the source material extract; The upper value in each entry mean the amount of protein in micrograms per well needed to reach 50 % inhibition. The lower values represent the maximum inhibition reached (%) furthermore. The IgE binding capacity of peak 2 protein was found to be higher than that of peak 1 protein; since lower concentration of peak 2 protein was needed to inhibit up to 50 % the binding of specific IgE to the allergosorbant phases.

Table 1. cross-inhibition of specific IgE, binding among Fish extract (FE). Peak I and Peak II, using ELISA inhibition

<table>
<thead>
<tr>
<th>Allergosorbant</th>
<th>Inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak II</td>
</tr>
<tr>
<td>Fish extract</td>
<td>1.0/73</td>
</tr>
<tr>
<td>Peak I</td>
<td>0.6/90</td>
</tr>
<tr>
<td>Peak II</td>
<td>0.9/93</td>
</tr>
</tbody>
</table>
DISCUSSION

As far as the allergenic activity of protein in peak 1 and peak 2 is concerned data presented in this work clearly evidence that protein of these peaks are the most clinically relevant allergens from the tested source materials. Besides, allergens of peak 1 and peak 2 independently accounted for a high percentage (about 75%) of the total allergenic activity. Demonstrating that they are the allergens from their source material and consequently other allergens might be present in the extract with a little allergenic importance in comparison with that of peak 1 and peak 2.

On the other hand, peak 1 and peak 2 cross-reacted in IgE-binding inhibition completely inhibiting the binding of specific IgE to each other. It seems clear that both protein bear the same allergenic epitopes and this fact supports the idea of extremely high homology between them. This finding are in line with those previously reported that cross reactions
may extend to the presence of carbohydrate structures shared by several components of the same protein extract never that less, a slight difference between these peaks was observed for the amount of protein needed to inhibit up to 50% the binding of specific IgE to each other or to whole extract, about two fold peaks 1 to peak 1 amount were necessary to reach similar inhibition levels.

The allergen city of isolated peaks was not lost during the purification process since it maintained the ability of inhibiting the binding of specific IgE from sensitive subjects. This finding was in line with that previously reported11).

In conclusion our data support the hypothesis that the allergen city of purified allergen was not lost during the purification process.

REFERENCES

