HISTOLOGICAL STUDY ON THE SYSTEMIC INFECTION OF THE FUNGUS CLADOSPORIUM SP. TO SOME ORGANS IN BALB/C MICE

Adel J. Hussein*, Basil A. Abbas**
*Department of Anatomy, College of Veterinary Medicine, University of Basrah, Basrah, Iraq.
**Department of Microbiology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq.
(Received 17 January 2005; Accepted 6 June 2005)

Keywords: Cladosporium, Mycelia, Necrosis.

ABSTRACT

Balb/c mice were used for investigating the ability of the fungus Cladosporium sp. To infect the animal organs. Livers and kidneys of the animals were fixed and histopathologically examined after injecting the animal with fungal spores. The study showed that the fungus Cladosporium sp. is able to infect the animal organs. Fungal mycelia was observed among tissue cells in addition to many histological changes such as cell degeneration, necrosis, congestion and bleeding.

INTRODUCTION

Fungi have been reported to cause several human diseases (1-7). Aspergillus spp. reported to infect lungs causing a disease called Aspergillosis (2). In chronic herpetic involvement of central nervous system (CNS), Cladosporiosis is considered as a lesion resulting from a immunosuppression (3). Cladosporium also reported to cause many fungal diseases. For example, C. oxysporum have been isolated from biopsy of papillomacular lesions of leg (4). C. bantianum has been found to cause meningitis in adults and children (5). C. cladosporioides causes opportunistic infections involving skin in immunocompromised patients (6). Infection with Cladosporium have been also reported in patients after transplantation (7).

The present study aims to investigate the ability of this fungus to infect kidney and liver tissues of the animals.

MATERIALS AND METHODS

Animals: Eight Balb/c mice (male) with 2 months age and weight ranged between 25-80 gms were used for lab. experiment.
Fungus: Clinical isolate of the fungus Cladosporium sp. were obtained from fungal laboratory of College of Science, Basrah University. The fungus grew on PDA medium and incubated at 30°C for 2 weeks. Fungal spore suspension was made in normal saline and arranged to 10^{10} spore/ml.

Injection: 1/2 ml of the above suspension was used to inject 6 animals in peritoneum. The rest of animals were injected with 1/2 ml normal saline as control.

Histology: After one month of post injection, animals were killed. Animal organs (livers and kidneys) were fixed in 10% formalin for 24hrs. For block preparation, paraffin wax method was applied according to Drury et al., (8), followed by sectioning with 5μm cutter. Slides were stained with hematoxylin-eosin for histopathological study. Other slides stained with P.A.S. for fungal examination.

RESULTS

Histological study of the infected animal organs showed that the fungus Cladosporium sp. was able to infect these organs systemically. Fungal mycelia were appeared in liver and kidney tissues. Many histological changes have been observed in studied organs by the fungal infection (Fig 1).

Response to the infection and cell degeneration was seen in kidney tissues in addition to heavy bleeding (Fig 1 & 2). More over renal tubules necrosis was also observed in kidney tissues (Fig 3).

Liver tissues showed less changes in comparison to the renal tissues. Blood vessels congestion and bleeding in different locations of liver (Fig 4). Granuloma was appear in liver tissues in addition to cell degeneration and blood coagulation. Many white blood cells were aggregate in blood vessels (Plate 5).

DISCUSSION

In the present study, the animal tissues were infected by the fungal mycelia indicating the ability of the fungus Cladosporium to infect the animal systemically. Following the injection of the animal with 10^{15} spores, the fungal threads were appeared in the tissues. The histological study of the tissues showed that the fungus inducing many histological changes in studied organs, such as infection, blood vessels congestion, bleeding and white blood cell aggregation. This results is agreed with the previous studies on filamentous fungi (9, 11). Liver and Kidney necrosis was observed in the infected tissues. This may be happened due to the enzymatic activity of the fungus (10). The renal
tubules necrosis was observed also in this study and this in line with the previous study on the fungus *A. fumigatus* (11). Aggregation of white blood cells also seen in infected areas. This may be as a result of presence of fungal spores which act as foreign bodies.

Fig. (1): T.S in Kidney of Mice infected with Cladosporium sp. showing: bleeding (a); renal tubules degeneration (b); Fungal mycelia (c). H&E stain (330X)

Fig. (2): T.S in Kidney of Mice infected with Cladosporium sp. showing: heavy bleeding (a); necrosis (b) and cell congestion (c). H&E stain (330X)
Fig. (3): T.S in Kidney of Mice infected with *Cladosporium* sp. showing: renal tubules necrosis (a); cell degeneration (b). H&E stain (396X)

Fig. (4): T.S in liver of Mice infected with *Cladosporium* Sp. showing: Blood vessels congestion (a); bleeding (b). H&E stain (330X)

Fig. (5): T.S in Kidney of Mice infected with *Cladosporium* sp. showing: cell necrosis (a); granuloma (b) and blood coagulation (c). H&E stain (330X)
REFERENCES

23