PREVALENCE OF HYDATIDOSIS AND HEPATIC FASCIOLIASIS IN SLAUGHTERED ANIMALS AT BASRAH ABATTOIR

Esraa Abdul Wadoo
College of veterinary medicine, University of Basrah, Basrah, Iraq
(Received 22 May 2004; Accepted 4 November 2004)

Keyword: Hydatidosis, Fascioliasis, Abattoir

ABSTRACT

A study on the occurrence of hydatidosis and liver fluke infection in slaughtered animals was carried out over the years (1999-2000) at Basrah abattoirs. The study carried 1851 sheep, 655 cattle and 172 buffalo. The study showed 134 (7.2%), 55 (8.3%) and 64 (3.6%) had hydatid cysts, respectively. The frequency of the cyst in lung was 63 (47.01%), 29 (52.72%) and 31 (48.4%) in the inspected animals (sheep, cattle and buffalo) while in liver 71 (52.9%), 36 (65.4%) and 33 (51.5%) respectively. Other animals had been inspected for hepatic fascioliasis of 51 (2.75%), 29 (4.42%) and 28 (16.2%) respectively.

The rate of infection had also been reported according to seasonal variation among the same species of animals, the study showed high infection rate with hydatid cyst in sheep, cattle, and buffalo in spring (3.3%), (5.4%) and (26%) respectively, while infection rate with fascioliasis is high in sheep (3.2%) and buffalo (22.9%) in winter.

INTRODUCTION

Hydatidosis is a zoonotic disease caused by the dog tapeworm of the genus Echinococcus. It is one of the most important cestode infection of man, domestic and wild animals (1) and it is widely distributed all over the world (2). It is also a zoonotic disease and is considered to be one of the most serious parasitic diseases in the country (3).

Fascioliasis considered as an endemic disease in southern Iraq and the high financial losses of liver fluke disease may be partially due to death of the diseased animals (4,5).

Generally the economic importance of this disease is related to the losses of infected animals, reduction in milk production, loss in animal weight, bad wool quality and cost of treatment of diseased animals (6,7).

Consequently, several studies in Iraq connected over these diseases in Basrah, Baghdad, Mosul and Diwania (6, 8, 9, 10).

The present study was carried out to investigate the prevalence of animal hydatidosis and fascioliasis in Basrah slaughter House.

MATERIALS AND METHODS

The present study was carried out in Basrah abattoir between January 1999 to January 2000. The number of animals 1851 sheep, 655 cattle and 172 buffalo were examined after slaughter for hydatid cyst and liver fluke infection.
Percentage of infections with hydatid cyst and fasciola was reported in lung and liver, as well as seasonal distribution was studied.

RESULTS

Results of table (1) shows the number and percentage of infection with hydatid cyst and fasciola in sheep, cattle and buffalo. The rats were 7.2% sheep, 8.3% cattle and 36.5% buffalo.

As shows rates of liver fluke infection 2.75% sheep, 4.42% cattle and 16.2% buffalo.

The location of the cyst according to organs as follows in lung 47.01% sheep, 52.72% cattle and 48.4% buffalo, whereas in the liver 52.9% sheep, 65.4% cattle and 51.5% buffalo.

Mixed infection were recorded with hydatid cyst and liver fluke in these animals sheep 38(2.05%) cattle 21(3.20 %) and buffalo 19 (10.85%). The seasonal prevalence were reported in table (2), the high infection rates with fascioliasis in sheep (3.2%) and buffalos (2.9%) in winter, and light infection rates during autumn (1.6%) and (7.1%) while the high infection rate with hydatidosis in sheep, cattle and buffalo were reported during spring (3.3%), (5.4%) and (26%) respectively.

DISCUSSION

The prevalence of hydatidosis in ruminants in Iraq varies considerably according to many factors such as the geographical locations and the epidemiology of the tapeworm (11). The results in present study were differ from many studies which were carried in different Iraqi provinces. In study of (12) at Basrah abattoirs revealed that the percentage of hydatid cyst infection 3.43% in sheep, 1.23% in cattle and 3.96% in buffaloes, whereas (13) reported the infection rate of hydatid cyst of sheep in south of Iraq was 6.91% and the infection rate of cattle in Basrah 11.1% reported by (14) the rate of hydatid cyst infection of the same species of our study was reported by (9) in Dewania 16.3 in sheep and 1.7 in cattle.

Also the prevalence of hydatidosis and fascioliasis were lower than those reported by (15) she found 9.4% and 15.5% in sheep between July 1992 to June 1993 in Baghdad respectively.

Whereas (16) reported the infection with hydatid cyst in Mosul 9.9% in sheep and 8.9% in cattle infected with hydatid cyst and concerning the lung and liver infection in our result are higher than that reported by (11), 12.5% of lung and 6.1% of sheep liver, while 20% of lung and 7.9% of cattle livers.

Also the rates of infection of both lung and liver were higher than those reported by (16), 18.8% of lung and 43.9% of sheep liver and 30.6% of lung and 52.1% of cattle liver.

The light rates of infection with hydatidosis in the last year may be due to irradiation programs for stray dogs, restricted of slaughter animals out side the abattoirs and increase hygienic condition inside the abattoirs represented with condemnation infected organs.

On the other hand the rate of liver fluke infection in buffaloes 16% This result is much lower than reported by (17), 70% in Baghdad abattoirs.

In study of (10) at Basrah the infection rate with fasciola spp. are 45.6%, 25.7% and 6.5% in buffaloes, cattle and sheep respectively.

Also (18) in Mosul reported the infection rate 44% in buffalo, While in sheep was more lower than that reported by (15), 15% in Baghdad. Whereas we found the rate of sheep infection was quit close to (13) they reported 2.5%. However the light infection may be due to intense veterinary prophylaxis programs for liver fluke in the last year and dried swampy land and lakes or lower numbers of animals slaughtered. The seasonal distributions of infection with hydatid cyst and liver fluke shows a higher infection rates with fasciola in winter in both sheep and buffalo 3.2% and 22.9% respectively, while the lower infection rate in Autumn 1.6% and 7.1% respectively. The rates of hydatidosis in buffalo and cattle higher in spring 26% and 5.4% respectively and lower in Autumn 9.8% and 2.04% respectively may be due to accumulation of lakes and starting animals grazing.
Table (1): The prevalence of hydatidosis and liver fluke infection in slaughtered animals

<table>
<thead>
<tr>
<th>Animal species</th>
<th>No. of examined animals</th>
<th>No.% of infection with hydatid cyst</th>
<th>No.% of infection with fasciola</th>
<th>Frequency of the cyst</th>
<th>Mixed infection hydatid and fasciola</th>
</tr>
</thead>
<tbody>
<tr>
<td>sheep</td>
<td>1851</td>
<td>134(7.2)</td>
<td>51(2.75)</td>
<td>lung - 63(47.01)</td>
<td>71(52.9)</td>
</tr>
<tr>
<td>Cattle</td>
<td>655</td>
<td>55(8.3)</td>
<td>29(4.42)</td>
<td>lung - 29(52.72)</td>
<td>36(65.4)</td>
</tr>
<tr>
<td>Buffalo</td>
<td>172</td>
<td>64(36.6)</td>
<td>28(16.2)</td>
<td>lung - 31(38.4)</td>
<td>33(51.5)</td>
</tr>
</tbody>
</table>

Table (2): Seasonal distribution of hydatidosis and liver fluke infection in slaughtered animals.

<table>
<thead>
<tr>
<th>Season</th>
<th>% of infected with Fasciola spp.</th>
<th>% of infected with hydatid teggs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sheep</td>
<td>cattle</td>
</tr>
<tr>
<td>Winter</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Spring</td>
<td>3.1</td>
<td>5.3</td>
</tr>
<tr>
<td>Autumn</td>
<td>1.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Summer</td>
<td>2.6</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Discussion

The prevalence of hydatidosis and liver fluke infection in slaughtered animals was evaluated in this study. The results showed that the highest infection rates were observed in sheep, followed by Cattle and Buffalo. Seasonal variation was also observed, with higher infection rates during the summer months. The study highlights the importance of implementing effective control measures to reduce the prevalence of these infections in slaughtered animals.

Conclusion

The results of this study provide valuable insights into the prevalence of hydatidosis and liver fluke infection in slaughtered animals. Further research is needed to develop effective control strategies to reduce the incidence of these diseases.
REFERENCES

